Backhaul-constrained Cache-enabled Small Cell Networks with Hybrid Power Supplies
نویسندگان
چکیده
Explosive data traffic growth leads to a continuous surge in capacity demands across mobile networks. In order to provision high network capacity, small cell base stations (SCBSs) are widely deployed. Owing to the close proximity to mobile users, SCBSs can effectively enhance the network capacity and offloading traffic load from macro BSs (MBSs). However, the cost-effective backhaul may not be readily available for SCBSs, thus leading to backhaul constraints in small cell networks (SCNs). Enabling cache in BSs may mitigate the backhaul constraints in SCNs. Moreover, the dense deployment of SCBSs may incur excessive energy consumption. To alleviate brown power consumption, renewable energy will be explored to power BSs. In such a network, it is challenging to dynamically balance traffic load among BSs to optimize the network utilities. In this paper, we investigate the traffic load balancing in backhaulconstrained cache-enabled small cell networks powered by hybrid energy sources. We have proposed a network utility aware (NUA) traffic load balancing scheme that optimizes user association to strike a tradeoff between the green power utilization and the traffic delivery latency. On balancing the traffic load, the proposed NUA traffic load balancing scheme considers the green power utilization, the traffic delivery latency in both BSs and their backhaul, and the cache hit ratio. The NUA traffic load balancing This work was supported in part by NSF under grant no. CNS-1218181 and no. CNS-1320468.
منابع مشابه
Performance Analysis of Cache-Enabled Millimeter Wave Small Cell Networks
Millimeter wave (mmWave) small-cell networks can provide high regional throughput, but the backhaul requirement has become a performance bottleneck. This paper proposes a hybrid system that combines traditional backhaul-connected small base stations (SBSs) and cache-enabled SBSs to achieve the maximum area spectral efficiency (ASE) while saving backhaul consumption in mmWave small cell networks...
متن کاملHeterogeneous Services Provisioning in Small Cell Networks with Cache and Mobile Edge Computing
In the area of full duplex (FD)-enabled small cell networks, limited works have been done on consideration of cache and mobile edge communication (MEC). In this paper, a virtual FD-enabled small cell network with cache and MEC is investigated for two heterogeneous services, high-data-rate service and computation-sensitive service. In our proposed scheme, content caching and FD communication are...
متن کاملEnergy and Delay Optimization for Cache-Enabled Dense Small Cell Networks
Caching popular files in small base stations (SBSs) has been proved to be an effective way to reduce bandwidth pressure on the backhaul links of dense small cell networks (DSCNs). Many existing studies on cache-enabled DSCNs attempt to improve user experience by optimizing end-to-end file delivery delay. However, under practical scenarios where files (e.g., video files) have diverse quality of ...
متن کاملTransfer Learning Approach for Cache-Enabled Wireless Networks
Locally caching contents at the network edge constitutes one of the most disruptive approaches in 5G wireless networks. Reaping the benefits of edge caching hinges on solving a myriad of challenges such as how, what and when to strategically cache contents subject to storage constraints, traffic load, unknown spatio-temporal traffic demands and data sparsity. Motivated by this, we propose a nov...
متن کاملRobust Beamforming in Cache-Enabled Cloud Radio Access Networks
Abstract—Popular content caching is expected to play a major role in efficiently reducing backhaul congestion and achieving user satisfaction in next generation mobile radio systems. Consider the downlink of a cache-enabled cloud radio access network (CRAN), where each cache-enabled base-station (BS) is equipped with limited-size local cache storage. The central computing unit (cloud) is connec...
متن کامل